SHRI VISHWAKARMA SKIL UNIVERSITY

(CLASS NOTES)

SUBJECT: ZDSC-103(APPLIED MATHEMATICS-I) FACULTY NAME: Dr. M.K. SRIVASTAV

UNIT-5: STRAIGHT LINES

Topic 5.1: Cartesian and Polar Coordinate:

- In the Cartesian plane, the horizontal line is called the x-axis and the vertical line is called the y-axis.
- The coordinate axes divide the plane into four parts called quadrants.
- The point of intersection of the axes is called the origin.
- Abscissa or the x-coordinate of a point is its distance from the y-axis and the ordinate or the y-coordinate is its distance from the x-axis,
- (x, y) are called the coordinates of the point whose abscissa is x and the ordinate is y,
- Coordinates of a point on the x-axis are of the form $(x, 0)$ and that of the point on the y-axis is of the form $(0, y)$.
- The coordinates of the origin are $(0,0)$.
- Signs of the coordinates of a point in the first quadrant are $(+,+)$, in the second quadrant $(-,+)$, in the third quadrant $(-,-)$ and in the fourth quadrant $(+,-)$.

Polar Co-ordinates

A polar coordinate system, gives the co-ordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points in the $x y$-plane, using the origin $(0,0)$ and the positive x-axis for reference. A point P in the plane, has polar coordinate (r, θ), where r is the distance of the point from the origin and θ is the angle that the ray $|O P|$ makes with the positive x-axis.

Example: Plot the points whose polar coordinates are given by $\left(2, \frac{\pi}{4}\right),\left(3, \frac{7 \pi}{4}\right)$
$\mathbf{A}:\left(2, \frac{\pi}{4}\right)$
$\left(3, \frac{7 \pi}{4}\right)$

- The representation of a point in polar coordinate is not unique.

Polar to Cartesian coordinates and Vice-Versa Conversion:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& \text { where, } r=\sqrt{x^{2}+y^{2}} \\
& \qquad \theta=\tan ^{-1}\left(\frac{y}{x}\right)
\end{aligned}
$$

Example: To convert $(1,1)$ to polar coordinates.
Answer: Here,

$$
x=1, \quad y=1
$$

Formula: $\quad r=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

$$
\theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{1}{1}\right)=\tan ^{-1}(1)=\frac{\pi}{4}
$$

So the required polar coordinate $=(r, \theta)=\left(\sqrt{2}, \frac{\pi}{4}\right)$
Example: To convert $\left(3,-\frac{\pi}{3}\right)$ in Cartesian coordinates.
Answer: Here,

$$
r=3, \quad \theta=-\frac{\pi}{3}
$$

Formula: $\quad x=r \cos \theta, \quad y=r \sin \theta$

$$
x=3 \cos \left(-\frac{\pi}{3}\right), y=3 \sin \left(-\frac{\pi}{3}\right)
$$

$$
x=3 \times\left(\frac{1}{2}\right), \quad y=3\left(-\frac{\sqrt{3}}{2}\right)
$$

$$
x=\frac{3}{2}, y=-\frac{3 \sqrt{3}}{2}
$$

So the required Cartesian coordinate $=(x, y)=\left(\frac{3}{2},-\frac{3 \sqrt{3}}{2}\right)$

- Distance between the points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$:

$$
\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example: Distance between $(4,6)$ and $(0,3)$ is $=\sqrt{(0-4)^{2}+(3-6)^{2}}=\sqrt{16+9}=5$ units

- The coordinates of the mid-point of the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
- Area of triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is:

$$
A=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|
$$

Example: The area of the triangle, whose vertices are $(0,0),(1,0)$ and $(0,1)$ is

$$
\begin{aligned}
& A=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& A=\frac{1}{2}|0(0-1)+1(1-0)+0(0-0)| \\
& A=\frac{1}{2} \text { units }
\end{aligned}
$$

- If the area of the triangle $A B C$ is zero, then three points A, B and C lie on a line, i.e. they are collinear.

Slope of a line: If θ is the inclination of a line, then $\tan \theta$ is called the slope or gradient of the line. The slope of a line whose inclination is 90° is not defined. The slope of a line is denoted by m. Thus $\mathrm{m}=\tan \theta, \theta \neq 90^{\circ}$.
It may be observed that the slope of x -axis is zero and slope of y -axis is not defined.

- Slope of line passing through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$:

Formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Example: To find the slope of line passing through points $(3,-2)$ and $(7,-2)$
Answer: Here, $\left(x_{1}, y_{1}\right)=(3,-2),\left(x_{2}, y_{2}\right)=(7,-2)$
Formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-(-2)}{7-3}=0$

- Angle between two lines: Let L_{1} and L_{2} be two non-vertical lines with slope m_{1} and m_{2} respectively. Let α_{1} and α_{2} are the inclination of lines L_{1} and L_{2}.
Then $m_{1}=\tan \alpha_{1}, m_{2}=\tan \alpha_{2}$
Let θ be the angle of intersection then,

$$
\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|
$$

Note: 1. Two lines are parallel if $m_{1}=m_{2}$
2. Two lines are perpendicular if $m_{1} m_{2}=-1$

Example: If the angle between two lines is $\frac{\pi}{4}$ and slope of the lines is $\frac{1}{2}$, find the slope of the other line.
Answer: Formula: $\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|$

$$
\text { Given } m_{1}=\frac{1}{2}, m_{2}=m \text { and } \theta=\frac{\pi}{4}
$$

Therefore,

$$
\begin{aligned}
& \tan \frac{\pi}{4}=\left|\frac{m-\frac{1}{2}}{1+\frac{1}{2} m}\right| \Rightarrow 1=\left|\frac{m-\frac{1}{2}}{1+\frac{1}{2} m}\right| \\
& \Rightarrow 1=\frac{m-\frac{1}{2}}{1+\frac{1}{2} m} \quad \text { or } \frac{m-\frac{1}{2}}{1+\frac{1}{2} m}=-1 \\
& \Rightarrow m=3 \text { or } m=-\frac{1}{3}
\end{aligned}
$$

Topic 5.2: Different Forms of a Straight Line:

- Point Slope Form: Equation of line passing through point $\left(x_{0}, y_{0}\right)$ and slope m is given by:

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

Example: To find the equation of line through point $(-2,3)$ with slope -4
Answer: Here, $\left(x_{0}, y_{0}\right)=(-2,3)$ and $m=-4$
Formula: $y-y_{0}=m\left(x-x_{0}\right)$

$$
\Rightarrow y-3=-4(x+2) \Rightarrow 4 x+y+5=0
$$

- Two-Point Form: Equation of line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by:

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

Example: To find the equation of line passing through the points $(1,-1)$ and $(3,5)$
Answer: Here, $\left(x_{1}, y_{1}\right)=(1,-1)$ and $\left(x_{2}, y_{2}\right)=(3,5)$

$$
\text { Formula: } \quad y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

$$
\begin{aligned}
& \Rightarrow y-(-1)=\frac{5-(-1)}{3-1}(x-1) \\
& \Rightarrow-3 x+y+4=0
\end{aligned}
$$

- Slope- Intercept Form: Equation of line with slope m and intercept c on y-axis is given by:

$$
y=m x+c
$$

Example: To find the equation of line with slope -1 and intercept of 2 on y-axis.
Answer: Here, $m=-1$ and $c=2$
Formula: $y=m x+c$

$$
\Rightarrow y=-x+2 \Rightarrow x+y-2=0
$$

- Intercept Form: Equation of line making intercepts of a and b on x-axis and y-axis respectively is given by:

$$
\frac{x}{a}+\frac{y}{b}=1
$$

Example: To find the equation of line, which makes intercepts -2 and 3 on x-axis and y-axis respectively.
Answer: Here, $a=-2$ and $\mathrm{b}=3$

$$
\text { Formula: } \begin{aligned}
& \frac{x}{a}+\frac{y}{b}=1 \\
\Rightarrow & \frac{x}{-2}+\frac{y}{3}=1 \\
\Rightarrow & 3 x-2 y+6=0
\end{aligned}
$$

Topic 3.3: General Equation of a Line:

General equation of line is given by: $A x+B y+C=0$
Where A, B are not zero. The slope of equation is $m=-\frac{A}{B}$

Example: Equation of line is $3 x-4 y+12=0$. To find its (I) Slope and (II) x - and y-intercepts.
Answer: (I) Given equation of line: $3 x-4 y+12=0$

$$
\begin{aligned}
& \Rightarrow 4 y=3 x+12 \\
& \Rightarrow y=\left(\frac{3}{4}\right) x+3
\end{aligned}
$$

Comparing with slope-intercept form $y=m x+c$, we have slope of the line $m=\frac{3}{4}$
(II) Given equation of line: $3 x-4 y+12=0$

$$
\begin{aligned}
& \Rightarrow 3 x-4 y=-12 \\
& \Rightarrow\left(\frac{3 x}{-12}\right)+\left(\frac{-4 y}{-12}\right)=0 \\
& \Rightarrow \frac{x}{\left(\frac{-12}{3}\right)}+\frac{y}{\left(\frac{-12}{-4}\right)}=0 \Rightarrow \frac{x}{(-4)}+\frac{y}{(3)}=0
\end{aligned}
$$

Comparing with intercepts form of line $\frac{x}{a}+\frac{y}{b}=1$, we have $a=-4, b=3$

- Topic 3.4: Distance of a Point from a Line: The distance of a point from a given line is the length of the perpendicular drawn from the point to the line. Let equation of line is: $A x+B y+C=0$. Its distance from the point $P\left(x_{1}, y_{1}\right)$ is d.

$$
\text { Then } \quad d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{x^{2}+y^{2}}}
$$

Example: To find the distance of the point $(1,-2)$ from the line $4 x-3 y+9=0$.
Answer: Given point $\left(x_{1}, y_{1}\right)=(1,-2)$ and line $4 x-3 y+9=0$
Comparing with general equation of line $A x+B y+C=0$, we have: $A=4, B=-3, C=9$
Formula: $d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{x^{2}+y^{2}}}$

$$
\begin{aligned}
& \Rightarrow d=\frac{|4 \times 1-3 \times(-2)+9|}{\sqrt{4^{2}+(-3)^{2}}} \\
& \Rightarrow d=\frac{|4+6+9|}{\sqrt{16+9}} \Rightarrow d=\frac{15}{5} \Rightarrow d=3 \text { units }
\end{aligned}
$$

